Biosynthesis of Sitosterol in Tissue Cultures of *Rabdosia japonica* Hara and Ergosterol in Yeast from [2-¹³C,2-²H₃]Acetate[†]

Shujiro Seo,ª* Ushio Sankawa,ʰ Haruo Seto,º Atsuko Uomori,ª Yohko Yoshimura,ª Yutaka Ebizuka,ʰ Hiroshi Noguchi,ʰ and Ken'ichi Takedaª

^a Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

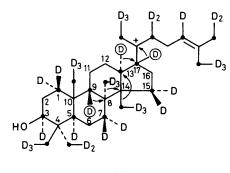
• Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Institute of Applied Microbiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan

The fate of the hydrogen atoms originating from $[2^{-13}C, 2^{-2}H_3]$ acetate was investigated in the biosynthesis of sitosterol (5) in cultured cells of *Rabdosia japonica* Hara and ergosterol (6) in yeast and the 1,2-hydride shifts, 20-H from C-17 and 17-H from C-13, were verified.

The biosynthesis of cholesterol from acetic acid was suggested more than 40 years ago.¹ Since the biogenetic isoprene rule was proposed,^{2,3} there have been many reports concerning the fate of the hydrogen atoms 2-H, 4-H, and 5-H, of mevalonic acid (MVA).⁴⁻⁶ Here we report on the fate of the hydrogen atoms originating from acetic acid in the biosynthesis of sitosterol (5) in tissue cultures of *Rabdosia japonica* Hara and ergosterol (6) in yeast (*Saccharomyces cereviceae* IFO 1346)fed [2-¹³C,2-²H₃]acetate.

Sodium $[2^{-13}C, 2^{-2}H_3]$ acetate[‡] was administered for four weeks to suspension cultures of *R. japonica*. Sitosterol (5) was isolated from the cells in the usual way⁷ together with triterpenes such as ursolic acid and oleanolic acid.⁸ Ergosterol (6) was isolated from yeast-fed $[2^{-13}C, 2^{-2}H_3]$ acetate.[§] We have already reported the ${}^{13}Cn.m.r.$ signal assignments of (5)⁹ and (6)¹⁰ based on the labelling patterns from $[1, 2^{-13}C_2]$ acetate. Using these assignments, we investigated the ${}^{13}C$ and ${}^{2}H$ labelling patterns in the 100 MHz ${}^{13}C-{}^{1}H{}{}^{2}H$ n.m.r. spectra. A carbon atom which has a deuterium atom migrating to the adjacent carbon atom appears with an accompanying signal which is shifted by the β -deuterium isotope effect¹¹ ($^{2}\Delta\delta_{C(^{2}H)}$ shown in parentheses in Table 1). The number of deuterium atoms attached directly to the ¹³C-labelled carbon is indicated by the signals shifted by the α -deuterium isotope effect ($^{1}\Delta\delta_{C(^{2}H)} - 0.27$ to -0.32 p.p.m. for primary and -0.34 to -0.42 p.p.m. for secondary carbon atoms).


As shown in Table 1, the signals due to C-13 [δ_C 42.28 for (5) and 42.74 for (6)] and C-17 [δ_C 56.12 for (5) and 55.67 for (6)] have β -deuterium isotopically shifted signals (-0.09 to -0.11 p.p.m.). Thus, it follows that 17-H and 20-H shift from C-13 and C-17, respectively, in (1) as postulated in the biogenetic isoprene rule^{2,3} to form a cationic intermediate (2). To complete the backbone rearrangement, a cyclopropyl ring is formed with the loss of a hydrogen from C-19 to give cycloartenol (3) in higher plants $[(1)\rightarrow(2)\rightarrow(3)\rightarrow(5)]$.^{4,5} In yeast a 8(9) double bond is formed to afford lanosterol (4) $[(1)\rightarrow(2)\rightarrow(4)\rightarrow(6)]$. Unfortunately, the number of deuterium atoms at C-19 of (5) could not be observed owing to signal overlapping.

The absence of a deuterium atom at C-3 in (5) and (6) supports the existence of a 3-oxo intermediate during extrusion of the two methyl groups at C-4.4.5 One of the deuterium atoms at C-7 was displaced by a hydrogen in (5), which

[†] Rabdosia japonica Hara was formerly called Isodon japonicus Hara.

 $[\]ddagger$ A mixture of labelled acetate (630 mg) and non-labelled acetate (1.26 g) in 9 l of medium.

[§] A mixture of labelled acetate (150 mg) and non-labelled acetate (300 mg) in 1 l of medium.

(1)

0

-D₂ D

D

Da

b

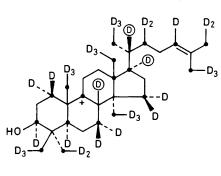
D

D₃

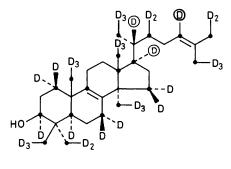
D

(3)

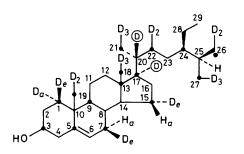
ത

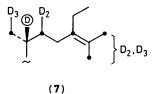

D

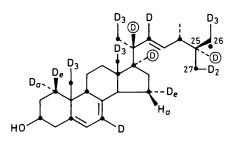
D

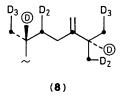

D₂

• = ${}^{13}C$


 D_3







(4)

supports 7(8) double bond formation followed by migration to the 5(6) position. The 7 α hydrogen atom was suggested to originate from NADH, and the 7 β hydrogen atom from the 2-pro-R hydrogen atom of MVA.⁶ This is also indicated by ${}^{1}\Delta\delta_{C(2H)}$ (-0.37 p.p.m.) because the value of one of the two shifted signals due to an α -deuterium atom at C-1 is -0.37 p.p.m. and the amplitude of an equatorial α -deuterium isotope effect was suggested to be smaller than that for an axial effect.¹² Displacement of one of the deuterium atoms by a hydrogen at C-15 in (5) and (6) agrees with 14(15) double bond formation during extrusion of the methyl group at C-14 followed by hydrogenation to 14-H_{α} and 15-H_{β}.⁶

As for the side-chain formation including alkylation at C-24, the deuterium atom at C-24 in (3) was lost in (5). In contrast, the deuterium atom at C-24 in (4) was located at C-25 in (6) $(^{2}\Delta\delta_{C(2H)} - 0.12 \text{ p.p.m.})$. This agrees with the mechanism that sitosterol (5) is formed *via* an intermediate (7) having a 24(25) double bond followed by reduction¹³ and that ergosterol (6) is

		(5)			(6)			(5)				(6)			
. .		$^{1}\Delta\delta_{C(^{2}H)}$		$^{1}\Delta\delta_{C(2H)}$					$1\Delta\delta_{\rm C}$			$\frac{1}{\Delta \delta_{\rm C}}$			
Carbon	δ _C	d_1	d ₂	δ_{C}	dı	d_2	Carbon	δ_{C}	d_1	d ₂	d ₃	δ _C	d_1	d_2	d_3
C-1	37.30	-0.37	e	38.33	-0.37	-0.80	C-15	24.32	-0.34			22.99	-0.34		
		-0.41			-0.42		C-16	28.25				28.19			
C-2	31.69			31.75			C-17	56.12	$(-0.11)^{f}$			55.67	$(-0.10)^{f}$		
C-3	71.78			69.98			C-18	11.87	`−0.29́	-0.57	-0.86	12.06	-0.28	-0.57	-0.85
C-4	42.25 ^d			40.54			C-19	19.40	e	e		16.27	-0.27	-0.56	-0.83
C-5	141.77			139.32			C-20	36.17				40.24			
C-6	121.66			119.09			C-21	18.81	-0.33	-0.61	-0.91	21.07	-0.30	-0.61	-0.91
C-7	31.94	-0.37		115.87	-0.29		C-22	34.00	-0.42	-0.81		135.03	-0.37		
C-8	31.94			140.67			C-23	26.19				131.51			
C-9	50.19			46.21			C-24	45.89				42.68	$(-0.12)^{f}$		
C-10	36.52			37.00			C-25	29.24				33.04			
C-11	21.11			21.14			C-26	19.81	-0.31	e		19.89	-0.28	-0.60	-0.90
C-12	39.82			39.06			C-27	19.09	e	e	e	19.61	-0.32	-0.61	
C-13	42.28 ^d	$(-0.10)^{f}$		42.74	(-0.09)f		C-28	23.12				17.57			
C-14	56.81			54.42			C-29	12.01							

Table 1. ¹³C N.m.r. data of sitosterol^a (5) and ergosterol^b (6) biosynthetically labelled from [2-¹³C,2-²H₃]acetate.^c

^a Biosynthesized in tissue cultures of *Rabdosia japonica* Hara. ^b Biosynthesized in yeast (*Saccharomyces cereviceae* IFO 1346). ^c ¹³C N.m.r. spectra were recorded on a JEOL GX-400 spectrometer operated at 100 MHz with ¹H and ²H decoupling mode in [²H]chloroform (δ_C 77.000). ^d These signals were assigned by INEPT. ^e These signals were not observed owing to overlap with other signals. ^f ² $\Delta\delta_{C(2H)}$ values.

biosynthesized via the $\Delta^{24(28)}$ intermediate (8).¹⁴ Carbon-26 (pro-R methyl group at C-25) of (6) retained three deuterium atoms, while C-27 (pro-S methyl group at C-25) of (6) retained only two. This fact confirms that C-26 and C-27 originate from C-6 and C-2, respectively, of MVA.¹⁰

Received, 28th April 1986; Com. 566

References

- 1 K. Bloch and D. Rittenberg, J. Biol. Chem., 1942, 145, 625.
- 2 L. Ruzicka, Experientia, 1953, 9, 357; Proc. Chem. Soc., 1959, 341.
- 3 A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni, *Helv. Chim. Acta*, 1955, **38**, 1890.
- 4 For reviews see e.g. H. H. Rees and T. W. Goodwin, in 'Biosynthesis' (Specialist Periodical Report), The Chemical Society, London, vol. 1, 1972, p. 59; vol. 2, 1973, p. 16; vol. 3, 1975, p. 14.

- 5 For reviews see *e.g.* L. J. Mulheirn, in ref. 4, vol. 4, 1976, p. 31; vol. 5, 1977, p. 76; vol. 6, 1980, p. 95.
- 6 For review see E. Caspi, *Tetrahedron*, 1986, **42**, 1, and references cited therein.
- 7 S. Seo, Y. Tomita, and K. Tori, J. Am. Chem. Soc., 1981, 103, 2075.
- 8 S. Seo, U. Sankawa, H. Seto, Y. Ebizuka, A. Uomori, Y. Yoshimura, and K. Takeda, J. Chem. Soc., Chem. Commun., following communication.
- 9 S. Seo, Y. Tomita, and K. Tori, J. Chem. Soc., Chem. Commun., 1978, 319; S. Seo, A. Uomori, Y. Yoshimura, and K. Takeda, J. Am. Chem. Soc., 1983, 105, 6343.
- 10 S. Seo, A. Uomori, Y. Yoshimura, and K. Takeda, J. Chem. Soc., Chem. Commun., 1984, 1174.
- 11 P. E. Hansen, Annu. Rep. NMR Spectrosc., 1983, 15, 105.
- 12 R. Aydin, J. R. Wesener, H. Günther, R. L. Santillan, M.-E. Garibay, and P. Joseph-Nathan, J. Org. Chem., 1984, 49, 3845.
- Y. Tomita and A. Uomori, J. Chem. Soc., Perkin Trans. 1, 1973, 2656.
- 14 M. Akhtar, P. F. Hunt, and M. A. Parvez, Chem. Commun., 1966, 565.